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Abstract

This study sought to create an inverted pendulum control system using simple analog
components for demonstration in an undergraduate controls lab. Integration with
MIT’s 2.010 motor control lab necessitated the stabilization of an inverted pendulum
with its base travelling in an arc about a horizontal axis.

A detailed dynamic model of this system was derived. A full state feedback
approach was modelled and analyzed using MATLAB’s Simulink. A small pendulum
was constructed and mounted to a motor in the 2.010 lab. An analog control circuit
was designed and tested.

Stabilization was unsuccessful primarily due to nonlinear friction effects in the
motor. The effects of the motor dead zone were examined in the Simulink model and
future improvements are discussed.
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Chapter 1

Introduction

The inverted pendulum is a classic controls problem commonly covered in introduc-

tory controls and dynamics classes. Many people have solved the inverted pendulum

problem, the most notable recent example being Dean Kamen’s Segway. Many mod-

ern inverted pendulums use gyroscopic sensors, expensive optical encoders and ac-

celerometers in tandem with microprocessors or full-blown computers to implement

their control algorithms. While the sophistication of these sensors and computing

power have their advantages, they make the control problem intangible to students

with only a rudimentary knowledge of these sensors and advanced controls techniques.

Thus, while the problem of stabilizing the inverted pendulum on a cart is not a new

one, the challenge undertaken here was to control an inverted pendulum using simple

analog components such as potentiometers and operational amplifiers, thus demon-

strating the solution in a manner more accessible to introductory controls students.

To further this goal, the inverted pendulum designed here used a motor currently in

the MIT Mechanical Engineering undergraduate motor control lab. Using this motor

to control the base of the inverted pendulum increases the potential for integrating

this project into the controls lab and making this solution accessible to students.

Integrating the pendulum with the 2.010 controls lab meant moving beyond the

classic linear inverted pendulum problem to stabilize a pendulum with its base trav-

elling in an arc about a horizontal axis.

Chapter 2 briefly presents the classic inverted pendulum and derives the dynamic

13



model of the inverted pendulum with an arcing base. Chapter 3 discusses the full state

feedback approach and the MATLAB simulations of the pendulum. Chapter 4 details

the mechanical system, including the 2.010 lab platform, the pendulum designed, and

circuitry added to obtain additional feedback signals necessary for full state feedback.

Chapter 5 describes the setup required and the procedure for testing and debugging

and the attempt to compensate for friction. Chapter 6 discusses why this stabilization

attempt was unsuccessful and recommendations to overcome damping effects in the

future.
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Chapter 2

Dynamics

2.1 Overview of the Classic Inverted Pendulum

The inverted pendulum on a cart is a classic problem in dynamics and controls. The

basic system is represented here in Figure 2-1. The pendulum mass, m, is supported

by a rigid rod of length L. The rod rotates in the xy plane about the pivot P on

the cart. The cart is of mass M and moves along the x-axis. The challenge is to

prevent the pendulum from falling by controlling the input force, F , on the base

of the pendulum. The system can be fully described by the coordinates θ for the

pendulum angle and xP to measure the horizontal position of the cart.
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Figure 2-1: The classic inverted pendulum on a cart system.
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2.1.1 Dynamic Model of Classic Inverted Pendulum

The results of the linearized dynamic model are briefly given here for later comparison

with the arcing base inverted pendulum. The dynamics of the pendulum can be

determined by first applying the principle of angular momentum about the moving

pivot, P , which yields

mL2θ̈ + mLẍP = mgLθ − bθ̇ (2.1)

where b is the viscous damping in the pivot P and g represents gravity.

Applying a force balance around the base of the cart yields a second dynamic

equation governing the cart motion. Combining these results one may obtain the

following description of the system in state determined form, with the state vector,

~x, where

~xT =
[

xP ẋP θ θ̇

]
(2.2)

and

~̇x =




0 1 0 0

0 −c
M

−mg
M

b
ML

0 0 0 1

0 c
ML

g(M+m)
ML

−b(M+m)
mML2




~x +




0

1
M

0

−1
ML




F (2.3)

where c is the viscous friction on the cart base.

These dynamic results are used in the implementation of common control schemes

for the inverted pendulum problem.

2.1.2 Common Control Approaches

Common approaches to stabilizing this system include full state feedback and root

locus techniques. Control schemes such as the one presented in Ogata’s Modern Con-

trol Engineering [2] implement full state feedback using the state space representation

of the system presented in equations(2.2) and (2.3) above.

A second common approach, covered in MIT’s 6.302, is to use root locus techniques

16



applied to just the pendulum. From equation (2.1), the transfer function governing

motion for the pendulum becomes

Θ(s)

XP (s)
=

−mLs2

mL2s2 + bs−mgL
(2.4)

This system is unstable, (with b = 0 the open loop poles are at s = ±
√

g
L

).

The important difference between these approaches is that in the first we control

the input force, F , and in the second we control position, xP .

2.2 Inverted Pendulum with Arcing Base

The physical system examined here differs significantly from the classic inverted pen-

dulum, because the base no longer travels in a linear motion. The pendulum was

mounted to a motor with its axis of rotation parallel to the ground. As a result

the base of the pendulum now travels in an arc in the xy plane. This is shown in

Figure 2-2, where the base of the pendulum rotates at a radius R about the fixed

point Q (representing the axis of the motor). The system is now fully determined by

the coordinates θ and α, where θ measures the pendulum angle with respect to the

ground as before and α measures the angle of the base of the pendulum. Figure 2-2.b

identifies the coordinates of the pivot P and the angle β, which measures the angle

of the pendulum relative to the base of the pendulum. The input to the system is

now the torque, T , applied by the motor.

2.3 Equations of Motion for Arcing Base Inverted

Pendulum

Let xP and yP denote the coordinates of the pivot, P , as shown in Figure 2-2.b.

The equations of motion describing the base of the pendulum are obtained by first

determining xP and yP as a function of α and then taking consecutive derivatives to

17
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Figure 2-2: The inverted pendulum with pivot, P , travelling in an arc about Q.

obtain the velocity and acceleration of P .

xP = R sin(α) (2.5)

yP = R cos(α) (2.6)

ẋP = R cos(α)α̇ (2.7)

ẏP = −R sin(α)α̇ (2.8)

ẍP = −R sin(α)α̇2 + R cos(α)α̈ (2.9)

ÿP = −R cos(α)α̇2 −R sin(α)α̈ (2.10)

18



Similarly, the equations of motion of the mass, m, can be given in terms of θ and the

position of P

x = xP + L sin(θ) (2.11)

y = yP + L cos(θ) (2.12)

ẋ = ẋP + L cos(θ)θ̇ (2.13)

ẏ = ẏP − L sin(θ)θ̇ (2.14)

ẍ = ẍP − L sin(θ)θ̇2 + L cos(θ)θ̈ (2.15)

ÿ = ÿP − L cos(θ)θ̇2 − L sin(θ)θ̈ (2.16)

The position of the P relative to the origin at Q, is given in vector form by ~q

~q = xP êx + yP êy (2.17)

The position of the mass m with respect to the pivot, P , is given by ~r

~r = L sin(θ)êx + L cos(θ)êy (2.18)

The velocities of the pivot, P , and of the mass, m, are given by ~vP and ~v, respectively

~vP = ẋP êx + ẏP êy (2.19)

~v = ẋêx + ẏêy (2.20)

Having determined the equations of motion for the system we will now model the

dynamic response of the pendulum.
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2.4 Dynamic Model of Pendulum with Arcing Base

The dynamic model of the system is obtained by first determining the dynamics of the

pendulum, using the principle of angular momentum, and the dynamics of the base,

using a torque balance around Q. These results are then combined for the compelete

system model.

2.4.1 Dynamics of the Pendulum

The first step to determining the dynamic model is to apply the angular momentum

principle about the moving point P . The principle of angular momentum states

d ~HP

dt
+ ~vP × ~p =

∑
~τext (2.21)

where ~HP is the angular momentum about P , ~p is the linear momentum of m, and

~τext are the external torques about P .

Remembering that ~p = m~v, the angular momentum about P is given by

~HP = ~r × ~p (2.22)

= [L sin(θ)êx + L cos(θ)êy]×m[ẋêx + ẏêy] (2.23)

= m[L sin(θ)ẏ − L cos(θ)ẋ]êz (2.24)

Substituting the equations of motion for ẋ and ẏ determined in Section 2.3, we have

~HP = m[L sin(θ)(−R sin(α)α̇− L sin(θ)θ̇)

−L cos(θ)(R cos(α)α̇ + L cos(θ)θ̇)]êz (2.25)

= −mL[R(sin(α) sin(θ) + cos(θ) cos(α))α̇ + L(sin2(θ) + cos2(θ))θ̇]êz (2.26)

Using the trigonometric identities sin2(θ)+cos2(θ) = 1 and cos(θ−α) = cos(θ) cos(α)+

sin(θ) sin(α) the equation above becomes

~HP = −mL[R cos(θ − α)α̇ + Lθ̇]êz (2.27)

20



Taking the derivative to obtain the first term of equation (2.21) we have

d ~HP

dt
= −mL[−R sin(θ − α)(θ̇ − α̇)α̇ + R cos(θ − α)α̈ + Lθ̈]êz (2.28)

Calculating the second term in the angular momentum equation (2.21) we have

~vP × ~p = [ẋP êx + ẏP êy]×m[ẋêx + ẏêy] (2.29)

= m[ẋP ẏ − ẏP ẋ]êz (2.30)

Substituting again from the equations of motion in Section 2.3 and using the trigono-

metric identity sin(θ − α) = (cos(α) sin(θ)− sin(α) cos(θ)) we obtain

~vP × ~p = −mRL sin(θ − α)θ̇α̇êz (2.31)

The external torques about P are due to friction in the pivot joint and gravity on the

pendulum mass, m. So the right hand side of equation (2.21) yields

∑
~τext = ~τf + ~τg (2.32)

where ~τf is the torque due to friction and ~τg is the torque due to gravity. By inspection

the viscous friction torque is

~τf = bβ̇êz (2.33)

where we have defined positive torque in the −êz direction. Since β = θ − α,

~τf = b(θ̇ − α̇)êz (2.34)

Again, it is important to note here that êz is positive in the −α direction, which

explains the positive sign on this damping term.

The force due to gravity on the pendulum mass is given by ~fg = −mgêy. Thus,

21



the torque due to gravity is

~τg = ~r × ~fg (2.35)

= [L sin(θ)êx + L cos(θ)êy]× [−mgêy] (2.36)

= −mgL sin(θ)êz (2.37)

Summing equations (2.34) and (2.37), equation (2.32) yields

∑
~τext = [−mgL sin(θ) + b(θ̇ − α̇)]êz (2.38)

Now substituting equations (2.28), (2.31), and (2.38) into the angular momentum

equation (2.21) and simplifying, we have the non-linear dynamic model of the pen-

dulum.

mLR sin(θ − α)α̇2 + mLR cos(θ − α)α̈ + mL2θ̈ = mgL sin(θ)− b(θ̇ − α̇) (2.39)

Linearizing about θ ≈ 0 and α ≈ 0 we obtain the following small angle approxima-

tions:

sin(θ) ≈ θ

cos(θ) ≈ 1

sin(θ − α) ≈ θ − α

cos(θ − α) ≈ 1

θ̇2, α̇2, θ̇α̇ ≈ 0

Linearizing equation (2.39) we obtain the following linear approximation of the pen-

dulum dynamics near the unstable equilibrium:

mLRα̈ + mL2θ̈ = mgLθ − b(θ̇ − α̇) (2.40)
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which can be rewritten as

θ̈ =
mgLθ − b(θ̇ − α̇)−mLRα̈

mL2
(2.41)

or

α̈ =
mgLθ − b(θ̇ − α̇)−mL2θ̈

mLR
(2.42)

Thus, we have obtained a linearized model of the pendulum’s motion.

2.4.2 Dynamics of the Base

To complete the model of the system we now look at the motion of the base of the

pendulum. In order to determine the dynamic response we take a torque balance

about the point Q. (Here we define torque to be positive in the positive α direction

or clockwise in the view of Figure 2-2.)

The total inertia of the base, with the pendulum attached, becomes I + MR2,

where I is the motor inertia, M is the mass of the base of the pendulum, and R is

the distance from the motor axis, Q, to the pendulum pivot, P . A torque balance

around Q yields
∑

~τ = (I + MR2)α̈ (2.43)

The sum of the torques about Q is given by

∑
~τ = ~T + ~τf + ~τpend + ~τg (2.44)

where ~T is the torque applied to the system by the motor, ~τf is the frictional damping

in the motor, ~τpend is the torque due to the pendulum force, ~fpend, and ~τg is the torque

due to gravity on the base of the pendulum mass, M .

In order to determine ~fpend, the force the pendulum exerts on the base, we use a

force balance on the pendulum mass, m. The free body diagram is shown in Figure

2-3. Summing forces in the x and y directions on the pendulum mass, m, in Figure

23
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Figure 2-3: Free Body Diagram of m. (a) The base of the pendulum with pendulum
force. (b) The mass, m.

2-3.b, we have

~fpend sin(θ) = mẍ (2.45)

~fpend cos(θ)−mg = mÿ (2.46)

where ~fpend is the force in the pendulum shaft. From this we obtain

~fpend = m[ẍêx + (ÿ + g)êy] (2.47)

The torque the pendulum exerts on the base is then

~τpend = ~q ×−~fpend (2.48)

= [xP êx + yP êy]×−m[ẍêx + (ÿ + g)êy] (2.49)

= −m[xP (ÿ + g)− yP ẍ]êz (2.50)
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Substituting the appropriate equations of motion from Section 2.3, applying the

trigonometric identities used previously, and linearizing, we obtain

~τpend = m[R2α̈ + RLθ̈ − gRα]êz (2.51)

Gravity acting on the base of the pendulum produces a force, ~Fg = −Mgêy, the

resulting torque on the motor is

~τg = ~q × ~Fg (2.52)

= [xP êx + yP êy]× [−Mgêy] (2.53)

= −MgxP êz (2.54)

After substitution from equation (2.5),

~τg = −RMg sin(α)êz (2.55)

Note that since we have defined positive torque to be opposite of êz it will be necessary

to invert ~τg and ~τpend for use in equation (2.44).

The frictional damping torque, ~τf , can be determined by inspection and is made

positive in the direction of positive α

~τf = −cα̇ (2.56)

Correcting the signs of each term to make torque positive in the direction of

positive α and substituting (2.51), (2.55) and (2.56) into equation (2.44) we obtain

the second equation of motion. The linearized result is

[(M + m)R2 + I]α̈ = T − cα̇−mLRθ̈ + (M + m)gRα (2.57)
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2.5 Dynamics for Combined Pendulum and Cart

System

The dynamics of the combined system can found using equations (2.41) and (2.42) to

alternately eliminate θ̈ and α̈ from equation (2.57). From this we obtain the following

expressions:

α̈ =
T + MgRα− cα̇−mgR(θ − α) + bR

L
(θ̇ − α̇)

MR2 + I
(2.58)

and

θ̈ =
−TR + gIθ + cRα̇ + g[(M + m)R2](θ − α)− b

mL
[(M + m)R2 + I)(θ̇ − α̇)

L(MR2 + I)
(2.59)

2.5.1 Change of Coordinates to α and β

The measurable coordinates in the simplest implementation of this system are α and

β, where α is the angle of the base, and β is the angle of the pendulum with respect

to the base such that β = θ−α, as shown in Figure 2-2. Thus, since we will measure

β with a simple potentiometer, it is advantageous to rewrite the system in the α and

β coordinate system.

Substituting β = θ − α into equation (2.58), we have

α̈ =
T + MgRα− cα̇−mgRβ + bR

L
β̇

MR2 + I
(2.60)

Now adding and subtracting the term gIα from equation (2.59) and grouping the

θ − α term we have

θ̈ =
−TR + gIα + cRα̇ + g[(M + m)R2 + I](θ − α)− b

mL
[(M + m)R2 + I)(θ̇ − α̇)

L(MR2 + I)
(2.61)

26



Substituting β = θ − α this becomes

θ̈ =
−TR + gIα + cRα̇ + g[(M + m)R2 + I]β − b

mL
[(M + m)R2 + I)β̇

L(MR2 + I)
(2.62)

Calculating β̈ we have

β̈ = θ̈ − α̈

=
−T (R + L) + g(I −MRL)α + c(R + L)α̇

L(MR2 + I)

+
g[(M + m)R2 + I + mRL]β − b[ (M+m)R2+I

mL
+ R]β̇

L(MR2 + I)
(2.63)

2.6 Results in State Determined Form

This system can now be written in state-determined form

~̇x = A~x + Bu (2.64)

where the input u is simply the applied torque, T , and the state vector, ~x is given by

~xT =
[
α α̇ β β̇

]
(2.65)

The A and B matrices are determined directly from equations (2.60) and (2.63)

A =




0 1 0 0

MgR
MR2+I

−c
MR2+I

−mgR
MR2+I

bR
L(MR2+I)

0 0 0 1

g(I−MRL)
L(MR2+I)

c(R+L)
L(MR2+I)

g[(M+m)R2+I+mLR]
L(MR2+I)

−b[
(M+m)R2+I

mL
+R]

L(MR2+I)




(2.66)

BT =
[
0 1

MR2+I
0 −(R+L)

L(MR2+I)

]
(2.67)

This solution lacks the simple elegance of the classic inverted pendulum on a cart

system given in Section 2.1. However, the basic form is the same, with the addition
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of two terms dependent on α. The first term quantifies the contribution to α̈ resulting

from gravity on the base of the pendulum (~τg ∝ MgRα). The dependence of β̈ on

α, however, is purely an artifact of the change of coordinates performed in section

2.5.1. Regardless of these differences, the design approach by full state feedback is

essentially unchanged.
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Chapter 3

MATLAB Model of the Inverted

Pendulum

In analyzing the inverted pendulum problem, heavy use was made of MATLAB to

model the system and examine the effects of various inputs and changes to the model.

The following details the full state feedback approach employed here and the Simulink

model used to analyze the system.

3.1 Theory of state feedback

The idea behind full state feedback is to make the feedback signal, u, dependent on

the state of the system: u = −K~x, as shown in Figure 3-1. Thus our state equation,

~̇x = A~x + Bu, becomes

~̇x = (A−BK)~x (3.1)

Since the characteristic polynomial of this system is

|sI−A + BK| = (s + p1)(s + p2) . . . (s + pn) (3.2)

it is possible to place the poles of the system (p1, . . . , pn) at a desired location with

an appropriate choice of K, provided that the system is completely state controllable

and that all the states are available for feedback. For more information on the theory
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Matrix Gain 

u  State vetor, x

Figure 3-1: Basic State Feedback

of state feedback see Modern Control Engineering by Ogata [2].

Ackermann’s formula for pole placement was used to place the closed loop poles

at −2± 1.5i,−10, and −10, given the linearized A and B matrices from Section 2.6.

For details of this procedure see Appendix B.2.

3.2 Simulink Model

Figure 3-2 shows the Simulink model with the additional blocks required to plot the

response of the system. The input and output blocks shown in the figure and discussed

below are borrowed from the MATLAB file penddemo.m. The detailed system model

with sensor gains is given in Figure 3-5.

3.2.1 Input

Since the model has no natural disturbances, it was necessary to create input dis-

turbances to observe the system response. In Figure 3-2 there is an offset, αref ,

subtracted from α. Since full state feedback systems are regulator systems, meaning

that they regulate to the origin of state space, this offset allows us to observe the step

response of the system as follows.

In this system the origin of state space is α = α̇ = β = β̇ = 0, when the pendulum

is balanced vertically and stationary. The offset has the effect of shifting the origin
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Figure 3-2: Simulink Model of Full State Feedback with the MATLAB’s pendulum
animation output and output to file.

of state space. We denote shifted coordinates with a ′ symbol.

α′ = α− αref (3.3)

and

β′ = θ − α′ (3.4)

= θ − (α− αref ) (3.5)

= (θ − α) + αref (3.6)

= β + αref (3.7)

Since the reference offset is a constant it has no effect on the derivatives of α and β.

Thus, the new origin of state space becomes

α− αref = α̇ = β + αref = β̇ = 0 (3.8)

The origin of state space now corresponds to α and β non-zero, but equal and opposite.

Fortunately, this condition also corresponds to a vertical pendulum (θ = 0). Thus,

the introduction of this offset simply has the effect of stabilizing the pendulum at non-
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zero α. A square wave offset supplied to α by the function generator in the upper

left of Figure 3-2, thus allows observation of the step response of the pendulum.

3.2.2 Output

The output blocks in Figure 3-2 include MATLAB’s graphical pendulum animation

and output to the workspace stored in the vector y.

Figure 3-3 graphically shows the pendulum balanced at non-zero α. The output

shown here has been slightly modified from MATLAB’s animation program pendan.m

to show the pendulum with the rotary base. For the modified code see Appendix B.5.

Figure 3-3: Modified MATLAB Pendulum Animation with pendulum balanced up-
right at non-zero α.

For a more detailed analysis, Figure 3-4 plots the data output from Simulink in

the vector y, illustrating the response of the pendulum to a square wave offset in α.

It is apparent at steady state in Figure 3-4, that β is equal and opposite to α,

indicating that the pendulum is standing upright. The lower half of the plot shows

that θ is in fact equal to zero in the steady state.

It is worth note that, with damping equal to zero, as in the plots here, the values

of the gain matrix, K, are all negative. This means that with the feedback equal

to −K~x the control system is actually implementing positive feedback on all of the

states. Although this may seem surprising, it is correct. Consider the classic inverted
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Figure 3-4: The modelled pendulum response to square wave reference input.

pendulum on a cart with the pendulum balanced at x > 0 and ẋ = θ = θ̇ = 0.

Positive feedback indicates the system will initially respond by moving the cart in

the +x direction. This will cause the pendulum to lean back towards the origin with

θ negative. Because the gains on the θ feedback are much higher than on x, this

will cause the pendulum to correct by moving back towards x = 0. Thus, positive

feedback actually gives the desired response.

Looking at Figure 3-4 you can see that the pendulum does respond to the step

input by initially making deviations in α worse, causing θ to tilt in the direction of

the desired equilibrium.

3.2.3 Detailed System Model

Having established the basic system and stability, the next step is to model the phys-

ical system. Figure 3-5 shows the model of the complete system, including the gains
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of all the sensors and components discussed in Chapter 4. For simplicity the output is

not shown. The gain matrix Ksys in the figure was determined by appropriately fac-

toring out the system gains from the K matrix previously found using Ackermann’s

Formula. More detail on this adjustment is available in Appendix B.3.

Kb

bridge

Kbp

beta_pot

Terminator

Kt

TachKa

Servo Ampiflier

Kp

Potentiometer

x' = Ax+Bu
 y = Cx+Du

Pendulum Model 
in State-Space

Km

Motor Torque 
constant

K

Matrix Gain 
(K_sys)

Kd

Differentiator
Gain

Demux

du/dt

 

V I T

alpha dot

  Beta

alpha
Voltage for alpha

Figure 3-5: State Feedback with the system gains added to the model

This specific system was used to model the effects of noise on various inputs,

non-linearities in the motor and general robustness to various conditions.
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Chapter 4

Apparatus

4.1 2.010 Lab Platform

The inverted pendulum analyzed here was built on the MIT 2.010 undergraduate

motor control lab platform. The 2.010 lab features an Aerotech 1135DC servo motor,

mounted with its axis of rotation parallel to the ground and an aluminum inertia

attached to the output shaft, as illustrated in Figure 4-1. The motor has a built-in

tachometer and a potentiometer attached. Thus, velocity and position feedback for

the motor were provided. An Aerotech 4020-LS linear power amplifier was used as a

voltage controlled current source to power the motor. The relevant physical constants

and gains for this system, given in Table 4.1, were determined by Adiel Smith and

Ziaieh Sobhani in 2001 [3].

Table 4.1: Gains for the 2.010 Lab setup

Servo Amplifier Gain, Ka 1.9368 A/V
Motor Torque Constant, Km 0.1697 Nm/A
Load Inertia, J 9.94×104 kg/m2

Coulomb Friction Coefficient, Kf 0.0306 kgm2/sec
Tachometer Gain Constant, Kt 0.0286 V/(rad/sec)
Potentiometer Gain Constant, Kp 0.2504 V/rad
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4.2 Pendulum Constructed

The pendulum base was clamped to the motor inertia in the orientation shown in

Figure 4-1. The pendulum was rigidly attached to the 1
4
” shaft passing through P .

To measure the pendulum angle, β, a Bourns 6639S-1-103 precision potentiometer

was attached to this shaft via a flexible coupling and supported from below.

 
 
 
  

Motor Inertia, J 

R 

P 

L 

Q Q’  

M 

m 

Pendulum  
Angle 
Potentiometer 

Y 

Z 

Figure 4-1: Side view of the inverted pendulum setup. The base of the pendulum
was mounted on the inertia of a 2.010 lab motor.

The dimensions of the pendulum constructed are given in Table 4.2. The total inertia,

I, includes the aluminum inertia, J , and the inertia of the clamp for mounting the

pendulum base.

Table 4.2: Dimensions of the Pendulum Constructed

Radius of the arcing base, R 0.0725 m
Distance from base to cg of pendulum, L 0.0532 m
Mass of the base, M 0.05338 kg
Total inertia, I 0.001293 kgm2

Mass of pendulum, m 0.00636 kg
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4.3 Circuitry Added

4.3.1 Motor Range Limiting and Shut-off

The physical design of this system requires that α be stabilized. If α were to exceed

≈ 90◦ from vertical, the pendulum could strike the work bench and harm the motor

or the pendulum. To prevent the possibility of this happening a safety circuit was

designed to limit the range of the motor. The details of this circuit are given in

Appendix A.1. It functions by grounding the output to the servo amplifier when α

exceeds a specified range.

In addition to this feature, a toggle switch was provided as an emergency off switch

to ground the output to the servo amplifier.

4.3.2 Angle Measurement

Additional circuitry was necessary to measure the angle of the pendulum with respect

to the base, β, and to differentiate this signal to obtain the angular velocity of the

pendulum, β̇, required for full state feedback.

The β signal was obtained by placing the angle-measuring potentiometer in a

wheatstone bridge, the details of which are in Appendix A.3. The β̇ signal was ob-

tained using an analog op-amp differentiation of the β signal. This circuit is discussed

in Appendix A.4.

Additional system gains introduced by these circuits are given in Table 4.3.

Table 4.3: Gains Introduced by Sensor Circuits

Gain of the β pot, Kbp 0.014529 V/◦

Gain of the bridge circuit, Kb 9.8147 V/V
Gain of differentiator, Kd 0.0105 V/V
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4.3.3 Feedback

The feedback was accomplished by sending the four states (α, α̇, β, β̇) to a summing

op-amp with gains determined by specific test conditions in the MATLAB model. It

was convenient to use potentiometers on the feedback signals so that the gains could

be quickly adjusted for different test conditions.
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Chapter 5

Procedure

5.1 Setup

The first step in testing this control system is mounting the pendulum assembly to

the motor inertia. It is critical that the pendulum be mounted such that the base of

pendulum is at the peak of the arc when α = 0. The position controller detailed in

Appendix A.2 was used to hold the motor inertia steady in the correct position while

mounting the pendulum.

After securing the pendulum we establish the β = 0 reference point. This was

done by first balancing the pendulum upright and securing the pot such that the β

signal was close to zero. The wheatstone bridge circuit discussed in Appendix A.3

was then adjusted to make β = 0 when the pendulum is balanced upright and α = 0.

Finally, one should check that the motor-range-limiting circuit is functioning cor-

rectly (shutting off the motor when α exceeds ≈ 45◦ from vertical) and that the signs

of all the feedback signals are positive in the positive direction of the motor.

5.2 Testing and Debugging

The procedure attempted for stabilizing the physical system was largely one of testing

and debugging. The MATLAB model was employed to determine the system gains

as discussed in Chapter 3, based on the specific conditions being tested. The four
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feedback resistors in the summer op-amp were adjusted and primarily qualitative

observations were made of the system response. The most significant observation

made during debugging was that damping was not negligible.

It was immediately observed that viscous friction in the pendulum joint introduced

by the β pot assemblage was considerable. The pendulum was easy to stand upright,

so easy, in fact, that it was difficult to precisely determine where β = 0 really was.

Since the magnitude of the damping was not easy to measure, it was estimated by

observing the system response with different levels of damping added to the model.

By this method the value of b was estimated to be near 0.004 kgm2/sec.

Regarding the motor, it was determined previously by Smith and Sobhani [3] that

the primary friction was not viscous but coulomb in nature. This means that the

viscous friction, c, in the dynamic model was essentially zero, while the coulomb

friction in the motor was approximated as

Tf = −sign(α̇)Kf (5.1)

where the sign(α̇) term ensures that this effect always opposes the direction of motion

of the motor. Tf here represents the constant torque that is consumed by the friction

internal to the motor caused by gears and bearings. The Coulomb friction must be

overcome before any torque will register on the output shaft.1 This Coulomb friction

effect is commonly known as a dead zone or dead band. The magnitude of Kf , given

in Table 4.1, was found to be 0.0306 kgm2/sec2, which corresponds to Tf of 0.0306

Nm.

This dead band torque is larger than the peak torque of 0.0154 Nm required for

the stabilization of the pendulum modelled in Figure 3-4. This result explains the lack

of response observed in the physical system, since for moderate deviations the control

signal was overwhelmed by the dead zone of the motor. To counteract this effect

a circuit was designed to compensate for the dead zone by adding a corresponding

voltage to ”preload” the output signal to the motor. This circuit made it possible to

1The effects of stiction are not considered here.
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observe the system response and enable further testing.

Following the initial compensation for the dead zone, it was observed that the

system response was asymmetric, consistently overcorrecting in the negative direction

and undercorrecting in the positive direction. This observation inspired a better

attempt at measuring the dead zone by observing the minimum voltage required

to make the motor turn. As expected, the values varied significantly depending

on direction and other effects, which probably include temperature, recent use, and

possibly even position of the motor.

It was difficult to measure the minimum voltage with accuracy or precision, how-

ever, the result was clearly asymmetric. The circuit discussed in Appendix A.5 was

implemented to better compensate for the asymmetric dead zone, based on the best

estimate of the size of the dead zone.

Unfortunately, even this better compensation failed to stabilize the system. Upon

examination of the effects of the dead zone in the MATLAB model (to be discussed in

Chapter 6), the attempt at stabilizing the inverted pendulum by the current method

in the time available was abandoned.
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Chapter 6

Results and Discussion

The results of these tests were inconclusive. In theory the inverted pendulum with the

arcing base considered here is no more difficult to stabilize than the classic inverted

pendulum on a cart. However, the practical problems in implementing the control

system were considerable.

6.1 Damping

The effects of damping are believed to be the dominant cause of failure. Damping

in the pendulum joint, introduced primarily by the β potentiometer and the flexible

coupling joining it to the pendulum shaft, was significant. While this damping has

a large impact on the model, stabilization is possible, provided the damping is ac-

counted for. Damping in the pendulum joint hindered this investigation because the

magnitude of the damping was hard to measure or even estimate. A robust stabi-

lization would require eliminating this damping altogether or at least determining a

better way to measure it.

The effect of coulomb friction in the motor is a more serious problem because the

model has no way to compensate for this non-linearity. Examining the effect of the

motor dead zone in the MATLAB model showed that the system was intolerant to

even a small dead zone. In general, the simulated pendulum became oscillatory and

unstable as the magnitude of the dead zone increased. Figures 6-1 and 6-2 illustrate
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this trend. The simulated responses shown here model the pendulum constructed with

an estimated damping of 0.004kgm2/sec. These plots show the pendulum regulating

to the origin, given an initial condition where it is balanced upright at α = 0.02 rad

(α ≈ 1◦).
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Figure 6-1: The simulated pendulum response to an initial condition. With no dead
zone the system is stable.

Figure 6-1 illustrates the stable response with no dead zone (Tf = 0). Figure 6-2,

however, illustrates how the system oscillates with increasing size of the dead zone. In

Figure 6-2.a, the pendulum oscillates between α ≈ ±2◦ with the dead zone modelled

as 1% of the measured dead zone on the 2.010 motor (Tf = 3.06×10−4). Figure 6-2.b

shows the oscillations increased to ≈ ±20◦ with a dead zone of 10% of the measured

value (Tf = 3.06× 10−3).

These oscillations quickly exceed the linear range of the model, indicating the

system is actually unstable for even a relatively small dead zone. The magnitude of

the oscillations was fairly independent of the initial condition given here; it increased
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Figure 6-2: The pendulum oscillates with dead zone at (a) 1% and (b) 10% of esti-
mated dead zone on the 2.010 motor.
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moderately as the damping, b, increased and in general decreased as the pendulum

size increased. Since our experimental measurements of the dead zone threshold were

at best able to pinpoint the magnitude of the dead zone within 10%, stabilization of

the current system using preloading method of dead zone compensation was deemed

futile.

6.2 Recommendations

A general recommendation for future attempts at stabilization would be to make the

pendulum larger and sturdier. During testing it was observed that some backlash

developed in the mounting between the pendulum and the shaft to the β pot. While

larger issues limited the success of this study, a sturdier construction would easily

eliminate this problem and potential nonlinearities in the system. Due primarily to

safety concerns the pendulum constructed was very small. As a result the linear range

of motion for P was less than 7cm (≈ 3in). While the dimensions of the pendulum

have no impact on the ideal MATLAB model, the small pendulum made observation

and debugging of the system difficult. Furthermore, a bigger, more massive pendu-

lum would add robustness to unaccounted for damping. Since a larger plant would

naturally require larger torques while the dead zone remains constant, the effects of

the dead zone would be diminished.

Eliminating the dead zone altogether could be accomplished by one of two tech-

niques. Conceptually the most straightforward would be to add a torque feedback

loop around the motor. The result of the dead zone was that the output torque to the

system was less than that specified by the controller. Placing feedback around the

motor we could ensure the output torque matched the desired value. The difficulty

in this approach would be to measure the torque output of the motor. Provided this

torque could be measured, a torque feedback loop would be the simplest solution to

eliminating the dead zone.

A second solution to the dead zone problem would be to modify the system model

to control the position of the base rather than torque. From equation (2.40) the
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transfer function for the pendulum only can be written as

Θ(s)

A(s)
=

s(mLRs− b)

−mL2s2 − bs + mgL
(6.1)

This system can be stabilized using root locus techniques, similar to those commonly

used with the classic linear inverted pendulum, as mentioned in section 2.1.2. Un-

fortunately, this approach involves considerable modifications to the control theory

presented here.

Unfortunately, issues with damping and the dead zone hindered the true goal of

this study, which was the stabilization of the inverted pendulum using simple analog

components. Obtaining the β̇ signal via an op-amp differentiator was an anticipated

challenge for implementing full state feedback in this manner.

The analog differentiator employed here and discussed in detail in Appendix A.4

differed considerably from the theoretical response below frequencies of 1.5 Hz. Since

these low frequencies are important in this system it may be worthwhile to improve

the differentiator after the improvements listed above. This effect is not considered

as great because the model seemed to be robust to a factor of 2 miscalculation in Kd,

which should cover the difference for the relevant frequencies.
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Appendix A

Circuits

A.1 Motor Range Limiting Circuit

The motivation behind this circuit was to limit the range of motion of the motor.

Since the motor is physically restricted to ≈ 180◦ of motion when the pendulum

assembly is mounted, it would be dangerous for the system to go unstable and have

the pendulum strike the work bench. The following circuit causes the motor to shut

off whenever the motor angle, α, exceeds a specified range—here ≈ 45◦ from vertical.
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Figure A-1: This circuit limits the range of α to ±45◦.
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Consider first the top half of the circuit in Figure A-1. The motor position, α,

was measured through a geared potentiometer with a gain of 0.2584 V/rad. Here this

signal was further amplified by a factor of 10, to obtain a working voltage range of

±4V, corresponding to the possible 180◦ of travel. The amplified input signal was

compared to an adjustable reference voltage of ≈ 2V, which corresponds to an α of

about 45◦ from vertical. When the amplified α input exceeds the reference voltage

on the 741 Operational Amplifier, (that is, when α exceeds the specified limit), the

output of the op amp will be high. This high output in turn activates an NPN

transistor through the resistor divider shown. When the NPN transistor is active,

current will flow through the relay, activating it and grounding the signal to the servo

amplifier. Providing this 0V input to the servo amplifier turns off the motor. Thus,

when α exceeds the set bound, the motor is turned off.

The lower half of this circuit performs the same operation on the inverted signal,

thus the motor has been effectively restricted to a range with absolute value of 45◦.

A.2 Motor Position Controller

It is critical for this system that the pendulum be mounted to the motor inertia such

that the pendulum pivot, P , is directly above Q (at the top of the arc) when α = 0.

The motor position controller, shown in Figure A-2, is used to hold the motor at

α = 0 so that the pendulum can be mounted correctly. This controller has a very

high gain and reacts quite forcefully when α is significantly different from zero. For

this reason, it is recommended to only engage the position controller after manually

aligning α to within ±15◦ of zero.

A.3 Pendulum Angle, β, Measurement

To measure the angular position of the pendulum a Bourns 6639S-1-103 precision

potentiometer was mounted on the shaft at the base of the pendulum with the flexible

coupling shown in Figure 4-1. This potentiometer has a resistance of 10KΩ linear
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Figure A-2: The PD position controller used to hold the motor inertia at α = 0 when
mounting the pendulum.

within 1% through a range of 340◦. Since the MATLAB model indicated that the

system was sensitive to noise in the measurement of the pendulum angle, it was

decided to power the β pot with a 5V voltage regulator, which filters much of the noise

from the 12V power supply. With the regulator voltage of 4.94V, the potentiometer

gain for the β pot, Kbp, is

Kbp =
4.94V

340◦
= 0.01453V/◦ (A.1)

The β pot was wired as one side of a wheatstone bridge circuit, as shown in Figure

A-3. The primary reasons for choosing this circuit were the ability to obtain a positive

and negative signal from a single voltage regulator, the potential to filter out common

mode noise, and the convenience of being able to balance the circuit with a simple

adjustment of the balancing pot, R8. With the resistor values used in Figure A-3, this

circuit was able to adjust the zero position of β through a wide angle and alleviate

much concern about the orientation of the β pot during mounting.

After mounting the β pot and zeroing the wheatstone bridge, the output voltage

difference (Va − Vb) is directly proportional to β. In order to reference this voltage
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Figure A-3: The pendulum angle measurement was obtained by placing the poten-
tiometer measuring β in a wheatstone bridge circuit and then using a differential
amplifier to amplify the signal and reference it to ground.

difference to ground for use in the rest of the control circuit, the voltage output of the

wheatstone bridge was passed through a differential amplifier, as shown in the right

in Figure A-3. With R9 = R10 = 10.0KΩ and R11 = R12 = 98.1KΩ, the differential

amplifier obeys the following relation

Vout =
R11

R10

(Va − Vb) = 9.81(Va − Vb) (A.2)

where Vout is referenced to ground and the expected gain of the bridge circuit, Kb,

due to the differential amplifier, is 9.81. This prediction corresponds very well with

the measured gain of 9.8147, plotted in Figure A-4.

A.4 Differentiator Circuit for β̇

In keeping with the minimalist approach to this this stabilization problem, the an-

gular velocity of the pendulum, β̇, was obtained by differentiating the position signal
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Figure A-4: The gain of the differential amplifier agreed well with the theory and was
very linear.

obtained as in Section A.3. Figure A-5 shows the circuit designed to differentiate β.
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Figure A-5: This circuit was used to differentiate the angular position, β, to obtain
the angular velocity, β̇.

The transfer function for this differentiator circuit is

Vout(s)

Vin(s)
=

−R2C1s

(R1C1s + 1)(R2C2s + 1)
(A.3)

where the break frequencies are designed at 1/R1C1 = 95.9rad/sec= 15.3Hz and

1/R2C2 = 352rad/sec= 56.0Hz. The upper break frequency was chosen to help
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eliminate high frequency noise and the lower bound break frequency high enough to

capture our expected response.

Figure A-6 plots the theoretical bode plot for this transfer function using MAT-

LAB’s bode function as well as the experimental data collected for the actual circuit.

The resulting circuit differentiates well up to 15Hz, although the gain does not follow

the theory exactly below approximately 2Hz.
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Figure A-6: The differentiator circuit performs close to the theory at higher frequen-
cies but not so well at low frequencies.

A.5 Dead Zone Compensation Circuit

Testing demonstrated that the dead zone overwhelmed the control signal. Since the

control system has no way of compensating for this non-linearity in the motor, a

separate circuit was designed to try to compensate for the dead zone of the motor.

The dead zone was measured by slowly increasing the voltage into the servo am-
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plifier and observing the minimum voltage required to make the motor turn. This

voltage was found to be approximately −0.08V in the −α direction and 0.12V in

the +α direction. These values correspond to torques of −0.027Nm and 0.040Nm,

respectively, which seems reasonable given that in Smith and Sobhani found the value

of the coulomb friction torque, Tf , to be 0.031Nm [3]. The asymmetry found here was

also present in other motors tested and accounted well for the observed asymmetric

behavior of the system.

The simple compensation scheme employed here is to ”preload” the output signal.

Essentially, we desire a circuit to perform the following math operation, which, if the

compensating voltages were known exactly, should effectively remove the dead zone:

Vout =





Vin + 0.12V if Vin > 0

Vin − 0.08V if Vin < 0

Figure A-7 shows the circuit used to compensate for this asymmetric dead zone.

Because, the voltage offset effect of the dead zone is fairly small, the circuit actually

operates on the desired voltage amplified by a factor of ten, adding an offset voltage

of 1.2V or −0.8V as appropriate and then reducing the signal by a factor of ten to

obtain the desired output1. The first two op-amps in Figure A-7 serve as a simple

comparator and inversion, which determine the sign of the input signal, causing Vs

to be high (≈ 10.5V) when Vin is positive and low (≈ −10.5V) when Vin is negative.

The interesting part of this circuit is the voltage divider input to the third op-

amp. This divider is designed such that when Vs is high the offset voltage, Voff is

1.20V and when Vs is low Voff is −0.80V. The resistor values given to achieve this

are approximate. In the physical implementation a 10K potentiometer was used in

place of R4 and R5. This pot was adjusted such that, without Vs connected, Voff

was midway between the positive and negative offset voltages, here 0.2V. A 50K pot

was then used in place of resistor R3 and adjusted such that the desired positive

1This amplification and deamplification could be a problem if we reach the saturation limits of
the op amps. In this case, if our desired output signal exceeds ≈ 1V, this amplification would have
saturated the op amp, resulting in some loss of the signal. Fortunately, our control signals were low
enough that this did not become a problem.
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Figure A-7: This circuit was designed to compensate for the asymmetric dead zone
of the motor.

and negative offset voltages were correct. This calibration was necessary because the

voltage rails and the saturation output of the op amps vary with the power supply

and op amps used, making a precise calculation of the resistor values tedious and

unnecessary.

The last op amp simply sums the offset voltage to the original signal and then

divides by ten to compensate for the earlier amplification by ten. The result of

implementing this circuit was to improve symmetry in the response, but still the

system was far from stable.
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Appendix B

MATLAB Code

Below is given the MATLAB code used in the simulations of the pendulum. The

file thesis_init.m initializes all the necessary constants as well as the state space

matrices A,B,C and D. The file poleplacement.m uses Ackermann’s formula to

obtain the state feedback gain matrix, K. Finally the file Kz_system, modifies K to

account for the system gains due to sensors and hardware in the system considered.

The full simulink model used, ziapenddemo.mdl, is shown here in Figure B-1. The

modifications to MATLAB’s pendulum animation pendan.m is given, as well as the

file plot_penddemo.m, which was used to plot the output response of the pendulum.

B.1 Initialization

%thesis_init.m

%This file initialized the values of all constants in the system.

global A B step num

L=.0532; %m

m=.0636; %kg

R=.0725; %m, base of pendulum from motor axis

g=9.81; %m/sec^2

b=0.004; %hinge damping, adjusted for testing

c=0; %Friction in the motor was determined to be coulomb only
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% so viscous coefficient is zero

%%%%%%%Begin Dynamics for Rotary Base%%%%%

%Calculate the total inertia:

M=.05338; %Mass of the pendulum base bracket

R_clamp=.0375; %m

M_clamp=.2106; %Mass of the clamp (kg)

J=9.97e-4; %kg*m^2 inertia of the motor

I=J+M_clamp*R_clamp^2; %kgm^2, total inertia

%Input A and B matrices for pendulum with arcing base

den=M*R^2+I; %The common denominator of all terms

A_arc=[0 1 0 0; M*g*R/den -c/den -m*g*R/den b*R/(L*den); 0 0 0 1;

g*(I-M*R*L)/(L*den) c*(R+L)/(L*den) g*((M+m)*R^2+I+m*L*R)/(L*den)

-b*(((M+m)*R^2+I)/(m*L)+R)/(L*den)]

B_arc=[0; 1/den; 0; -(R+L)/(L*den)]

%% Initialize the A, B, C and D matrices for Simulink and poleplacement

A=A_arc;

B=B_arc;

C_all=eye(4); %Full state feedback

D=zeros(4,1);

%Simulink Constants:

Ka=1.9368; %Amplifier Gain A/V

Km=.1697; %Nm/A

Kf=.0306; %kg*m^2/sec^2, Coulomb friction coefficient

Kt=.0286; %V/(rad/sec)

Kp=.2504; %V/rad

Kbp=.014529; %calculated theoretical v/degree of beta pot

Kbp=Kbp*180/pi; %V/rad

Kd=0.0105; %R2C1

Kb=9.8147; %Gain differential amplifier after wheatstone bridge

Tzf=0; %initialize dead zone to zero

step=0.0022; %initialize step input magnitude for signal generator

num=1000; %length of the output vector
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B.2 Poleplacement

%poleplacement.m

%

%This file uses Ackermann’s Formula to determine the K matrix.

%It also calls thesis_init and Kz_system, so running poleplacement.m

%sets up everything necessary to run the simulink file ziapenddemo.mdl

global A B

thesis_init;

M=[B A*B A*A*B A*A*A*B];

rank(M) %Rank of the M matrix needs to be 4 for this

%system to be fully state controllable

%ans =

%

% 4

% Establish the Desired Characteristic Equation/closed loop poles

J=[-2+1.5*i 0 0 0;0 -2-1.5*i 0 0; 0 0 -10 0; 0 0 0 -10]

% Use Ackermann’s Formula to find the Feedback matrix K, that

% will yield the desired closed loop poles and print K’ to screen:

phi=polyvalm(poly(J), A);

K=[0 0 0 1]*inv(M)*phi;

K_transpose=K’

%Run the file Kz_system, which factors out the system gains and then

%print to screen the gains to be implemented in K_summer

Kz_system;

systemgain=Kz_sys’

B.3 Calculate System Gains

The following code modified the K matrix found using Ackermann’s Formula to com-

pensate for the system gains. For example, all of the control signals pass through the

servo amplifier and the motor, thus, in the first step, the entire gain matrix is divided

by Ka and Km. This process is continued for each individual control signal to obtain
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the system gain matrix, Ksys.

%Kz_system

%

%Determine the system gain constant Kz_sys from the poleplacement result for K

Kz_sys=K/Km/Ka; %These are the gains common to all inputs

%Gain adjustments for specific signals

Kz_sys(1)=Kz_sys(1)/Kp; %alpha

Kz_sys(2)=Kz_sys(2)/Kt; %alpha_dot

Kz_sys(3)=Kz_sys(3)/Kbp/Kb; %beta

Kz_sys(4)=Kz_sys(4)/Kbp/Kb/Kd; %beta_dot

B.4 Full Simulink Model

The full Simulink model used is shown in Figure B-1. The input and output blocks

including the graphical animation came from MATLAB’s Simulink example file on

the inverted pendulum, penddemo.mdl, which can found by typing penddemo at the

MATLAB prompt. The graphical output for the pendulum response was invaluable

for quick observations of the system stability. The detailed pendulum response was

plotted by outputting the system states to the workspace. These states were stored

in the vector, y, while the time was stored in t.

B.5 Pendulum Animation

MATLAB’s pendulum animiation was modifed to make the output image reflect the

inverted pendulum with a rotary base. In the file pendan.m the following changes

were made to the function LocalPendSets:

function LocalPendSets(time,ud,u)

%%%%%%%Modified Code%%%%%%

%u(2) ALPHA

%u(3) BETA
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Figure B-1: The Full Simulink Pendulum Model.

%THETA=u(2)+u(3)

XDelta = 0.2; %width of the base block

PDelta = 0.2; %width of the pendulum

R = 3;

L = 4;

arrowwidth = 2;

XBaseTop = R*sin(u(2));

YBaseTop = R*cos(u(2));

PDcosA = XDelta*cos(u(2));

PDsinA = -XDelta*sin(u(2));

XPendTop = L*sin(u(3)+u(2))+XBaseTop;

YPendTop = L*cos(u(3)+u(2))+YBaseTop;

PDcosT = PDelta*cos(u(3));

PDsinT = -PDelta*sin(u(3));

set(ud.Cart,...

’XData’, [XBaseTop-PDcosA XBaseTop+PDcosA; -PDcosA PDcosA],...

’YData’, [YBaseTop-PDsinA YBaseTop+PDsinA; -PDsinA PDsinA]);

set(ud.Pend,...

’XData’,[XPendTop-PDcosT XPendTop+PDcosT;...

XBaseTop-PDcosT XBaseTop+PDcosT], ...

’YData’,[YPendTop-PDsinT+YBaseTop YPendTop+PDsinT+YBaseTop;...

-PDsinT+YBaseTop PDsinT+YBaseTop]);

set(ud.TimeField,...

’String’,num2str(time));

set(ud.RefMark,...

’XData’,u(1)+[-arrowwidth 0 arrowwidth]);
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%%%%%%%Modified Code%%%%%%%%

%%%%Original Code%%%%%%%

%XDelta = 2; %width of the base block

%PDelta = 0.2; %width of the pendulum

%XPendTop = u(2) + 12*sin(u(3));

%YPendTop = 12*cos(u(3));

%PDcosT = PDelta*cos(u(3));

%PDsinT = -PDelta*sin(u(3));

%set(ud.Cart,...

% ’XData’,ones(2,1)*[u(2)-XDelta u(2)+XDelta]);

%set(ud.Pend,...

% ’XData’,[XPendTop-PDcosT XPendTop+PDcosT; u(2)-PDcosT u(2)+PDcosT], ...

% ’YData’,[YPendTop-PDsinT YPendTop+PDsinT; -PDsinT PDsinT]);

%set(ud.TimeField,...

% ’String’,num2str(time));

%set(ud.RefMark,...

% ’XData’,u(1)+[-XDelta 0 XDelta]);

%%%%%Original Code%%%%%%

% Force plot to be drawn

pause(0) drawnow

% end LocalPendSets

B.6 Plotting Output

The following code plotted the data collected in the output vector y during simula-

tions.

%plot_penddemo.m

%

%plot ziapenddemo response

close all;

hold on;

subplot(2,1,1),

plot(t, y(:,2)*180/pi, ’b:’,t, y(:,3)*180/pi, ’b-’)

ylabel(’Angle (degrees)’);

title(’Response of the Pendulum’);
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legend(’Alpha’,’Beta’)

subplot(2,1,2),plot(t, (y(:,2)+y(:,3))*180/pi,’b-’);

xlabel(’Time (sec)’);

ylabel( ’Angle (degrees)’);

legend(’Theta’);
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